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The numerical formulation for the nonlinear master equation for the dissociation and 
recombination of a diatomic molecule is presented. Making the necessary variable and 
similarity transformation, the equation becomes more tractable from a computational 
viewpoint. The set of differential equations are formally uncoupled, and a nonlinear 
integral equation is solved. Knowing the solution to this equation, the solution for the 
set is easily achieved. 

1. INTRODUCTION 

In considering a nonequilibrium phenomenon which can be characterized 
by a Markovian stochastic process, a master equation is, at times, an adequate 
description of the system. In formulating a relatively general problem, consider 
a subsystem with particle density Ps dispersed in a heat bath with particle 
density P, , with the added condition Ps < PN . Initially, this subsystem of 
particles is in a nonequilibrium distribution, and as time evolves, it is allowed 
to relax via interactions between the subsystem particles and by interacting with 
the heat bath, which is at some initial temperature. Since the particle density Ps is 
much less then the heat bath density, the former interactions can be neglected. 

From the principle of detailed balancing, the system must relax from any given 
distribution toa equilibrium distributionprovided there exist no externalconstraints 
on the system. Consequently, the system of equations must take an arbitrary 
distribution with a time arrow to a steady state. 

In the dissociation and recombination (RD) of a diatomic molecule in which the 
subsystem is composed of diatomic molecules dispersed in a heat bath (an inert 
gas), the energy transfer processes which bring about RD can categorized essentially 
into two types: first, the interaction of the heat bath with the diatomic molecules 
in which quanta of translational energy are converted into vibrational energy 
for the molecule; and second; vibrational-vibrational transfer processes, which are 
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extremely efficient. However, due to the particle density condition, the latter 
process is negligible. 

The mathematical model [l-6] which describes the vibrational relaxation is a set 
of non-linear differential equations with a conservation condition 

dn(i) m-1 

- = z. { Wi Ij)[~l~W - W I i)[W4>1 dt 

+ [M] T(i j E) n”(e) - [M] FV(c 1 i) n(i) (Ref. 171) (1.0) 

where n(i) is the instantaneous concentration of molecules in the i-th state in which 
there are m - 1 discrete vibrational levels, [M’j is the concentration of the third 
body and is time invariant, n(e) is the number of atoms, and N is a constant. 
Equation (1.0) is a rate equation in which the term W(i I j) [M] n(j) is the rate of 
transition of molecules from the j-th to the i-th vibrational level. The quantity 
W(i 1 j) is the transition probability between the two discrete states, T(i 1 e) is the 
averaged transition probability between the continuum and the discrete level, 
and W(C ] i) is the converse of F(i / E). 

The problem in solving (1.0) is that the system of equations are quite large, 
and also pathological. Any standard numerical integrator [8-91 will fail, because 
of the multitude of calculation that must be done for each time step. A trans- 
formation is proposed that will drastically reduce the number of calculation per 
time step, and thereby render a feasible numerical solution at the interesting times. 

2. VARIABLE TRANSFORMATION 

A new state variable is defined which is the ratio of the instantaneous to the 
equilibrium population 

f(i) = n(i)/il(i) (2.1) 

&4 = n(dfi(4 (2.2) 

where ii(i) and B(e) are the corresponding equilibrium population. At macroscopic 
equilibrium, we have the detailed balancing condition 

W(i I j) E(j) = W( j 1 i) ii(i) (2.3) 

W(r 1 i) ii(i) = F(i 1 e) A2(c). (2.4) 
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Taking into account the variable transformation and the detailed balancing 
condition, equations (1 .O) and (1.1) become 

9 = [Ml m,fl Wj I i>kYj> - &)I + Ml Re I WY4 - &i>l (2.5) 
j=o 

and 
m-1 

go fiG> iXi> + VW4 84 = iv. 

Equation (2.5) may be written in a more compact form: 

(2.6) 

where 

I 

m-1 

aij = [M] W(j 1 i)(l - &j) - &[V(E I i) + C W(j I I)] for i,j<m 
z=o 
l#i 

and 
ai, = [Al] i;s(i I 6). 

It is obvious from (2.7) that C”,,, aii = 0 for all i. This implies that the steady 
state solution is 

[(i) = 1 for all i. 

3. SIMILARITY TRANSFORMATION 

Before equation (2.7) is integrated, it is beneficial to perform a number of 
transformations on the A matrix. From the detailed balancing conditions, it is 
possible to symmetrize Aoo : 

(!yj .(!$!j.(y~!!J = (;I;) (3.1) 

where 
E,, = {8ijC(i)1/2}, En = @imfi(4> 

and 

Boo = R,okoG;,I BOI = Eo&oKi 
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In order to uncouple the discrete levels, the B matrix is partially diagonalized: 

f-i ;j(;: ; ::j(;-; ;j = (!?;?;?Fj. (3.2) 

By using this orthogonal transformation, the matrix S,,B,,S,, is a diagonal matrix 
D,, and S,B,, = D,, 
where 

Do, = @i& 
and 

Do, = GLJ. 

m-1 

c %ofi1'2(j) is) 
j=O 

m-1 

.; I 

C sj.7n-lfi1'2(j) Et.8 
(3.3) 

j-0 

----------- 

fi(d t2t4 

Consequently, we define the new variable yi = C~~‘SjiW2(j) e(j) for i = l,..., 
~~-laandy,~= n”(c) e2(e). Equation (3.3) becomes 

Yi(O = 4iYiW + 4mYm2(0 

with the corresponding integral equation 

vi(t) = ed~~tyi(0) + dim&it s t eediit’ym2(f) dt’ for i = l,..., m - 1. (3.4) 
0 

4. SOLUTION OF THE INTEGRAL EQUATION 

The set of integral equations, along with the conservation condition, is the 
new system that must be solved. In order to facilitate matters, a recursive relation- 
ship can be obtained for equation (3.4): 

y& + A) = ed""(t+h) 

I 
y,(O) + dim ,y ~?-~“~‘J’m~(t’) dt’/ (4.1) 

yi(t + h) = edigh y*(t) + dilnediit 
I s 

wh esdigt’ym2(t’) dt’ . 
I 

(4.2) 
t 
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Making the transformation LY = t’ - t, we get 

yi(t + h) = edsih 1 yi(t) + dim s” e--ud6iym”(a + t) da/. 
0 

From the conservation condition, we have 

m-1 

c n(i)‘~“&jyj(t) + 1/2P1/2(E) y&t) = N. 
ii 

(4.3) 

(4.4) 

Using a simple two-point closed quadrature and taking into account equations (4.3) 
and (4.4), the following quadratic equation evolves for ym(t + A). 

m-1 
; n(i)1’2Sij ; dim] ym2(t + h) + W”‘“(41 Ym(t + h) 

+ iV - mffl n(i)1’2Sij [ed*dhyXt) + dim 2 ediih Ym20)]j = 0. (4.5) 
i.i 

Equation (4.3) becomes 

y& + h) = e di”hyi(t) + dim 5 edsfhym2(t) + di, t ym2(t + h). (4.6) 

Using equations (4.5) and (4.6), one can readily calculate the trajectories of yi(t). 
Consequently, using the transformation g = E-lSY, the corresponding solution 
for g(t) can be obtained. Solving the trajectory of yi has the advantage that one 
just has to do one diagonalization rather than one for each cycle. Since the 
eigenvalue spectrum [l, 61 is usually a pathological one, namely from -10d3 
to -1015, in order to obtain numerical stability, the eigenvalues and eigenvectors 
must be improved e.g. by a Rayleigh-Quotient iteration. For a further discussion 
of the numerical results, the reader is referred to the author’s previous work [6]. 
Another added feature is that in equation (4.5) the sums 

5’ n(i)1/2S,j di, and y1 SiI 
ii i 

are computed only once. 
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5. ERROR PROPAGATION 

The total error propagation of the numerical quadrature is 

m-1 
Is&t + h) = [--h3/12] Z(C) c e- ‘d”i’hdim[4 I 4s I 5m(t + 0) fm’(t + 0) 

i=O 

- Xm‘,(t + @ Ek(t + 0) - 2[4m’(t + 61” - &km2(t + @Iv (5.1) 
where 0 < &’ < h. 

It is necessary to estimate the error propagation in order to change an economical 
value for h in our calculation. In this particular case, it is not an easy problem 
since we know very little about 0 or the value of the function and it first and 
second derivatives. The simplest method for checking whether or not the chosen 
value for h is reasonable, consists in recalculating some of the results with a new 
value of h and making a comparison. The function p(t) is a monotonically increasing 
or decreasing depending on whether the case considered is a dissociation or 
recombination. At a very short time the error term may be approximated by 

m-1 
ETOT(t + h) m h”/6n”(~)[4~‘(t)]~ C e-ldii”dim . 

i-0 
(5.2) 

While at long time, we have 
m-1 

ET&t + h) w h3/12ii(c) 1 d~idime-ldfi’h. 
i=O 

At intermediate times one may use the equation (5.1). Knowing the total error 
criterion one may make a choice based on the knowledge of the function and its 
derivatives at the time t. 

6. EXAMPLE 

In the actual case for the recombination and dissociation of a gas, the A matrix 
is quite large and the matrix elements have a wide range of numerical values. 
In this example, we consider the simplest of cases for illustrative purposes. 
Consider a three-level system in which the third level corresponds to the contimum, 
and the initial distribution is (0, N, 0). The set of rate equations for this system is 

dn, - = + W,,n, + W,,n, + W13n32 dt 

+=Wn-+Wn+Wn2 
dt 21 1 22 2 23 3 

(6-l) 

(6.2) 

n, + n2 + 1/2n3 = N. (6.3) 
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Using the similarity transformations (3.1) and (3.2), one finds the eigenvalues 
for the discrete submatrix to be 

d - l/2{-[I Wll I + I w22 II f wl, + W2212 - 4wlIW22 - ~~2W2W2~. 11.22 - 

Since all W, for i f j are positive, this implies that d,, and d,, are less than zero. 
In this model calculation one has the condition that 

(WI, + W22)’ > --4(K2W21 - WII 62) and wll + W2212 > 0. 

This implies that d,, > d,, . Since the eigenvalue spectrum of A is seminegative 
definite [l], and from the partitioning theorem we have the following bounds on 
the eigenvalues 

41 < 40) < 0, 4, < h2W < 41, and A,, < 4, - 

Hence, a lower bound on the eigenvalue spectrum is the ratio of the largest eigen- 
value to smallest which is d,$d,, . It is this ratio that illustrates the pathological 
nature of the eigenvalue spectrum. 

In the numerical example the initial condition is (0,l. 105 x 106, 0). The following 
set of equations was considered: 

& - 
dt -1.1 x 10%,(t) + 316.22278n,(t) + 106.833n,2(t) 

dn,- 
dt - 31.62227&z,(t) - 5.1 x 104n2(t) + 506.838r~,~(t) 

n1 + 122 + l/2& = 1.105 x 105. 

Using the results from the previous sections one obtains Table I. 

TABLE I 

Time Mt) I*(t) SW Error 

o.q+oo) 
7.8(-08) 
9.7( -07) 
8.9( -06) 
5.q -05) 
1.3(-04) 
3.q-04) 
9.2( -04) 

co 

o.ooooq+oo) 
1.130191(-04) 
3.910230(-03) 
7.475054(-02) 
3.585504(-01) 
7.376431(-01) 
9.558909(-01) 
9.998982(-01) 
l.oooooo(+oo) 

1.105oOq+01) o.oooooo(+oo1 
1.100740(+01) 8.293247(-01) 
1.086306( +Ol) 2.956560(+00) 
1.015684(+01) 2.913144(+00) 
7.34015q+OO) 2.486894(+00) 
3.585317(+00) 1.765040(+00) 
1.432900(+00) 1.163815(+00) 
1.001002(+00) 1.000321(+00) 
l.oooooo(+oo) 1 .oooooq+oo) 

The equilibrium distribution is (105, lop, 103. 
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